Substitution Patterns Are GC-Biased in Divergent Sequences across the Metazoans

نویسندگان

  • John A. Capra
  • Katherine S. Pollard
چکیده

The fastest-evolving regions in the human and chimpanzee genomes show a remarkable excess of weak (A,T) to strong (G,C) nucleotide substitutions since divergence from their common ancestor. We investigated the phylogenetic extent and possible causes of this weak to strong (W → S) bias in divergent sequences (BDS) using recently sequenced genomes and recombination maps from eight trios of eukaryotic species. To quantify evidence for BDS, we inferred substitution histories using an efficient maximum likelihood approach with a context-dependent evolutionary model. We then annotated all lineage-specific substitutions in terms of W → S bias and density on the chromosomes. Finally, we used the inferred substitutions to calculate a BDS score-a log odds ratio between substitution type and density-and assessed its statistical significance with Fisher's exact test. Applying this approach, we found significant BDS in the coding and noncoding sequence of human, mouse, dog, stickleback, fruit fly, and worm. We also observed a significant lack of W → S BDS in chicken and yeast. The BDS score varies between species and across the chromosomes within each species. It is most strongly correlated with different genomic features in different species, but a strong correlation with recombination rates is found in several species. Our results demonstrate that a W → S substitution bias in fast-evolving sequences is a widespread phenomenon. The patterns of BDS observed suggest that a recombination-associated process, such as GC-biased gene conversion, is involved in the production of the bias in many species, but the strength of the BDS likely depends on many factors, including genome stability, variability in recombination rate over time and across the genome, the frequency of meiosis, and the amount of outcrossing in each species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of GC-Biased Gene Conversion in Shaping the Fastest Evolving Regions of the Human Genome

GC-biased gene conversion (gBGC) is a recombination-associated evolutionary process that accelerates the fixation of guanine or cytosine alleles, regardless of their effects on fitness. gBGC can increase the overall rate of substitutions, a hallmark of positive selection. Many fast-evolving genes and noncoding sequences in the human genome have GC-biased substitution patterns, suggesting that g...

متن کامل

Recombination drives the evolution of GC-content in the human genome.

Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue in the identification of functional sequence features. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We have analyzed the pattern o...

متن کامل

GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias.

The DNA strands in most prokaryotic genomes experience strand-biased spontaneous mutation, especially C-->T mutations produced by deamination that occur preferentially in the leading strand. This has often been invoked to account for the asymmetry in nucleotide composition, typically measured by GC skew, between the leading and the lagging strand. Casting such strand asymmetry in the framework ...

متن کامل

Substitution Patterns Are Under Different Influences in Primates and Rodents

There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombinatio...

متن کامل

Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes.

I present here evidence of remarkable local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. The substitution pattern at 10 loci in the telomeric region of the X chromosome was studied for four species of the Drosophila melanogaster species subgroup. Drosophila orena and Drosophila erecta are clearly the most closely related species pair (the erecta c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011